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Aristolochene synthase, which has been isolated from cell-free 
extracts of the fungi Aspergillus terreus1 and Penicillium 
roquefortii,2 catalyzes the cyclization of trans,trans-famesy\ 
pyrophosphate (1) (FPP) to the eremophilane sesquiterpene 
(+)-aristolochene (2)3 (Scheme I). According to the proposed 
mechanism, ionization of the allylic pyrophosphate and electro-
philic attack of the resulting cation at C-IO of the distal double 
bond, followed by loss of a proton from one of the two adjacent 
methyl groups, will generate the monocyclic intermediate ger­
macrene A (3). Protonation of 3 at C-I is thought to initiate 
further cyclization by intramolecular electrophilic attack on the 
4,5-double bond to form the bicyclic eudesmane cation 4. The 
latter intermediate can in turn rearrange to 2 by sequential 1,2-
hydride and methyl migrations followed by loss of a proton from 
C-9.4 We have recently reported the results of labeling studies 
that support this proposal and that establish that the cyclization 
of FPP to aristolochene takes place with net inversion of con­
figuration at C-I of the allylic pyrophosphate.1 The purification 
of aristolochene synthase from P. roquefortii has shown that the 
entire sequence of reactions is catalyzed by a single polypeptide 
of Mx 37 000,2 with no evidence for release of any free interme­
diates. We now report experiments that establish the stereo­
chemical course of the deprotonation steps involved in the for­
mation of aristolochene and that shed light on the conformation 
of the substrate FPP as it is folded at the active site of the cyclase. 

In order to determine which methyl group of FPP undergoes 
deprotonation, we carried out incubations of [12,12,12-2H3]FPP 
(la) and [13,13,13-2H3]FPP (lb) with crude aristolochene syn­
thase isolated from A. terreus as previously described.1,5 The 
requisite substrates were prepared from (Z)-[4,4,4-2H3]-3-methyl-
and (£)-[4,4,4-2H3]-3-methylcrotonic acids (5a and 5b),6 re­
spectively, by the procedure developed earlier7 and summarized 
in Scheme II. Analysis by 61.42-MHz 2H NMR spectroscopy 
of the sample of aristolochene (2a) (700 nmol) obtained from la 
revealed a single olefinic peak at 5 4.71, corresponding to deu­
terium at C-12, whereas the sample of 2b (1.35 fimol) derived 
from the E isomer, lb, gave rise to a resonance at 8 1.69 (D-13).8 
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Scheme I 

1a H*=D, H"=H 
1b H*=H, HB=D 

"Reagents: (a) (i) NaH, benzyl bromide; (ii) SeO2, EtOH; (iii) 
PBr3; (iv) PhSO2Na. (b) /!-BuLi, HMPA, THF. (c) (i) LiAlH4; (ii) 
PBr3. (d) (i) Li, EtNH2; (ii) CCl4, PPh3; (iii) (W-Bu4N)3HP2O7, 
CH3CN. 

Scheme III 

Thus it is the original C-12 (cis) methyl group of FPP that un­
dergoes deprotonation in the formation of the presumed inter­
mediate germacrene A.9 

(9) Incorporations of [l,2-l3C2]acetate have established a similar origin for 
the isopropenyl substituents of the plant phytoalexins capsidiol,10 2,3-germa-
crenediol, ' lubimin," and hydroxylubimin." Each of these substances is 
derived from FPP, presumably by way of germacrene A. Capsidiol has also 
been shown to be biosynthesized by oxidation of the aristolochene diastereomer 
5-epiaristolochene.'2 
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Scheme IV 

6a H=D, H =H 
6b HC=H, H°=D 

1c H°=D, HD=H 

1d HC=H, H°=D 

The proton that is lost from C-9 of 4 originates at C-8 of 
farnesyl pyrophosphate. To establish the stereochemical course 
of this deprotonation step, we prepared both (4/?,8i?)- and 
(45,85)-[4,8-2H2] FPP (Ic and Id) by enzyme-catalyzed con­
densation of (4Z)- and (4£')-[4-2H]isopentenyl pyrophosphate (6a 
and 6b),13'14 respectively, with dimethylallyl pyrophosphate in the 
presence of avian prenyl transferase14,15 (Scheme IV). After 
incubation of each of the stereospecifically deuterated FPPs with 
aristolochene synthase, the resulting samples of aristolochene were 
analyzed by 2H NMR. As summarized in Scheme III, aristo­
lochene 2c (730 nmol) retained both deuterium atoms, as evi­
denced by the presence of signals at 5 1.44 and 5.35, corresponding 
to D-3a and D-9, while 2d (500 nmol) showed a single peak at 
5 1.36, corresponding to D-3b. These results demonstrate con­
clusively that it is H-8j,- that is lost in the formation of the 
9,10-double bond of aristolochene. 

On the basis of the known relative and absolute configuration 
of (+)-aristolochene,3 it can be inferred that the sequential 1,2-
hydride and methyl migrations take place on opposite faces of 
the bicyclic intermediate. Loss of H-8„, which becomes H-9/3 
(H-9J() in 4, establishes that the proton that is lost must be syn 
to the migrating methyl group. The sequence of anti migration, 
syn deprotonation is readily explained by invoking a chair-boat 
conformation for the cyclizing FPP and intermediate germacrene 
A. Further experiments to test the proposed cyclization mecha­
nism and to characterize the cyclase itself are in progress. 
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Synthetic examples of tetrahedral copper(II) complexes are rare, 
despite current interest in their unusual electronic structure from 
both physicochemical and biological points of view.1 We now 
report that a hindered tripod nitrogen ligand,2 HB(3,5-iPr2pz)3", 
stabilizes the tetrahedral coordination geometry with reasonable 
durability in the solid state or in noncoordinating solvents. 

The reaction of KHB(3,5-iPr2pz)3 with 1 equiv of CuCl2-2H20 
in dry acetone gives Cu(Cl)(HB(3,5-iPr2pz)2) (1) as a deep brown 
microcrystalline solid in 60-70% yield.3 The same reaction with 
KHBpZ3 and KHB(3,5-Me2pz)3 yields only the disproportionation 
products, Cu(HBpz3)2

4 and Cu(HB(3,5-Me2pz)3)2,
5 respectively. 

The crystal structure of 1 is shown in Figure 1.6 The copper, 
chlorine, boron, and one pyrazole ring lie on a crystallographically 
imposed mirror plane. The mean bond lengths of Cu-Cl and 
Cu-N are close to one another, 2.13-1.98 A, with the dihedral 
angles approximately 90°. Hence, the coordination geometry of 
1 is described as a tetrahedron that is slightly elongated toward 
the chlorine atom. Although several examples7 of tetrahedral 
copper(II) complexes have been reported, their dihedral angles 
are not comparable to 90°, but lie in the range 50-70°, owing 
to significant flattening or elongation. 

The absorption spectrum of a solution of 1 in a noncoordinating 
solvent (CH2Cl2, toluene, or pentane) is essentially identical with 
the reflectance spectrum of the solid sample of 1, implying that 
the tetrahedral structure is preserved in these solvents. However, 
addition of a slight amount of a coordinating solvent such as 
DMSO and DMF into a CH2Cl2 solution of 1 causes the im­
mediate formation of the solvent adduct. The DMF adduct 
Cu(Cl)(DMF)(HB(3,5-iPr2pz)3) (3) was isolated, and the 
structure was established by X-ray crystallography.8 As shown 
in Figure 2, the adduct is a pentacoordinated complex of 
square-pyramidal geometry with one pyrazole nitrogen as an apical 
ligand. Owing to the formation of the adduct, the d-d band of 
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